Vibrations
Homework 4

Problem 1

McGhee, Alexander

A viscously damped system has a stiffness of 5,000 N/m, critical damping constant of 0.2 N-
s/mm, and a logarithmic decrement of 2.0. If the system is given an initial velocity of 1 m/s,

determine the maximum displacement of the system.
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Solve for wy

wg = wpyJ1— 2 = 50-0.95289 = 47.6455

Assume the system starts with no initial displacement
xO = 0

x(t) = e @t [(4) sin(wyt + ¢)]
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¢ =tan~! (&>

Vo + {wn X

But because the maximums do not occur when sine = 1, due to the exponential term, we need to find
where the function is a maximum by setting the velocity to 0 and solving for time

x(t) = —(w,e $“ntAsin(wyt) + wge S“ntAcos(wyt) = 0
wge @t Acos(wyt) = (w,e ~$@nt Asin(wyt)

wg  Sin(wgt)

{w, cos(wgt) = tan(wqt)

w
wgt = tan™! (—d)
Cwy

p= Ly -1(‘”"’)— 1 2626 = 00265
g " \Cw,) T a765 T

There for the max amplitude, when initial displacement is zero is
x(t) = e $“ntAsin(w4t)

x(0.0265) = 0.0134

A plot of this function reveals the true max amplitude
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Problem 2

A body vibrating with viscous damping makes five complete oscillations per second, and in
50 cycles its amplitude diminishes to 10 percent. Determine the logarithmic decrement and
the damping ratio.

Convert the given information about frequency

oscillations 1 27
———————— 5 —(s)=T->—=2nT" ' > wy=10m
second 5 iy

From the information given about diminishing to 10% in 50 cycles we can write

A
In (?) =In (o 1?4 ) this holds because its exactly 50 cycles so the amplitude must be on the same
1 . 0

point of the sinusoid
B In(10) B
J(2m)2 +1n(10)2

0.344

Problem 3
Do problem 1.65 from the text.

1.65. Calculate the frequency of the compound pendulum of Figure PL65 if a mass my is
added to the tip, by using the energy method. Assume the mass of the pendulum is evenly
distributed so that its center of gravity is in the middle of the pendulum of length /.

Figure P1.65 A compound
pendulum with a tip mass.

From this simplified model we can find the energy in
the system

We first want to find the potential energy
P, =mgz

The potential energy at any given time is a function of
theta, which comes about through the
height z = (H — h)

h = Hcos(0)
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H is known to be the length from the pin to the center of mass

H=<
2

The potential energy as a function of theta is therefore

mgL mgL
Po(0) = mg(H — h) = mgH — mgHcos(6) = ————

cos(6)

Now we should find the kinetic energy of the mass

1 2
Ke = EmV

Because the mass is rotating about a fixed point the velocity V is actually angular velocity
V=0 & m-],

So the kinetic energy becomes
K, = =Jo6?
e — 2]0
Due to conservation of energy

P, + K, = constant

mgL mglL
2 2

1 .
cos(0) + 5]092 = constant

We can take the derivative of the energy equation to say that the change in energy of each component
must equal each other

d (mgL mgL

dt\ 2 2 dt

1 . d
cos(8) + 51092) = — (constant)
mglL . . 1
——0sin(0) +=/,200 =0
2 2
Divide out the 8 term

mglL

sin(8) + J,6 = 0

We can see that this equation is non-Linear so we must linearize it by constraining the 8 term to be very
small

0 = sin(0)

mglL

7rﬂ+h9=0
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From this EOM we can find the standard form

mglL
2Jo

Substitute the moment J, for a rotating rod with one end fixed

0+ 0=0

_mL2
Jo = 3

mglL

b+—36=0

Therefore the natural frequency is
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Problem 4
Use the energy method to derive the equation of motion in terms of 8(¢) and the natural
frequency for the system shown below.

k s
.-'\.}ﬁv“ﬁﬂ ~
/ .
\ TN
SN
= IMass

Begin with a FBD

" From this picture we can see that there is
' , potential energy being added off axis.

1 2
US = 2<Ekxs)

The rotation of the disk has rotational energy

T, _1 62
rot_2]

The mass has translational energy

The sum of the energies must be constant because there are no known losses in this system.

2 1 .21 )2
kxg +§mx0 +§]9 = const
Because there is a no slip condition we can relate the arc length to the distance that point O travels

Xo
r0=x9 - 0=—
r

Notice though that point s travels a distance more than point O because it is off axis, this extra distance
is

X, =0a
So the displacement on the spring is therefore

Xs =Xq+Xxp=0a+0r=0(a+r)
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Replace 6 in the energy balance equation
1 . 1 .
k(a+1)?6% + Emrzez + 5]92 = const
Take the derivative of the energy balance WRT 0
| o1
2k(a +1)%00 + §m2r299 + 5]299 =0
Factor out 6 and simplify
2k(a+1)20 + mr?6 +J6 =0
Substitute the rotational momentum
J = Emr
Simplify
3 ..
2k(a +1)%0 + EerG =0

Standard form

2k(a + r)? .
Zklat+m)” ) 50
7mr2
Simplify
EOM 6+ w26=0
4k (a +1r)?
" 3m o r2
Problem 5

McGhee, Alexander

Research or read in a text about the topic of vibrational stability. Define in 3-4 sentences
for each term and in your own words (do not copy from any source): flutter, divergent

instability, and self-excited vibrations.

Flutter : an underdamped system that has energy added proportional to the dependent variable term or

the derivative of the dependent variable term. (negative c or k)

Divergent : an overdamped / critically damped system that has energy added proportional to the
dependent variable term or the derivative of the dependent variable term. (negative c or k)

Instability : the system is infinitely transient, and tends to = infinity as tlim
—00

Self-excited vibrations : energy is added to the system by internal system components
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Problem 6
Determine the single equivalent spring constant for the system shown below.

2

Because kq & kq , k3 & k3 are in parallel WRT each other they can be
combined into

kl &kl = 2k1
k3 &k3 = 2k3

This result can be seen on the equivalent spring system to below

- Because 2k, & k, & 2k5 are in series they can be rewritten into an equivalent
1

spring called K;
ks X First two springs together

b = 2k ik,

2k €1 2k, + k,

Now add the next in the series

ks keq12k3
keq, + 2k;3

Z % / Sub in

2k ky2k5
2k, + Kk,
2kqk,
K; ky m + 2k3
Simplify the numerator and denominator
4kiko ks
2k + k, R 4kqkoks Zhr++Hs
o 2kky, + 2k3(2k, + k) 2+t 2k ky + 2k5(2k, + k)
2k, + k,
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227 Expand and simplify
_ 4k ko ks
" 2kyky + 4ksky + 2k3k,

K

Notice that K; & kg4 are in parallel so they can be added

4k kyks

K, =
27 2kyky + 4ksky + 2ksk,

+ ky

Finally K, & ks are in series

aleykyks
(2k1k2 T aksk, + 2kak, T ka) ks

Ak ko k
ke 1n2n3
(Zklkz ¥ dkyk, + 2kak, k4) b ks

Expand

222222277 4k1k2k3k52}|<‘ l}‘{s":(j}i‘1}fzi‘§£3}i‘1 + 2k3k;)
1K 3Kq 3K

Ak leoks + Ky (2hkp + 4ksky + 2ksky)
21k, T Akaky T 2ksk, 5

Akykyksks + ksky(2kyky + 4ksky + 2ksky)
2koky + 4Raky + 2Rak,
4kykyksy + ka(2koky + 4ksky + 2ksky) + ks (2kiky + 4kzky + 2kzky)
Keq 2k1k2 + 4‘k3k1 + 2k3k2
4kykykaks + ksky(2kyky + dksky + 2ksky)
Akykyky + ka(2keky + 4ksky + 2ksky) + ks (2kiky + 4kzky + 2kzky)

'

Expand Again

Akeykyksks + 2k kokoky + Akskyksky + 2kskokok,
Akykyks + 2K kyky + Akakyky + 2kakoky + 2kikyks + Aksk ks + 2kskyks

Rearrange spring coefficients to be in order so we may see if combinations are available

Akykyksks + 2Ky kokoks + Akykskaks + 2kokskyks

K. =
1™ Ak kyks + 2kikyky + 2kykoks + 4kykaky + 2kokaks + 4kyksks + 2kykaks
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